## Published Date: $\quad$ 1/4/2021

## Purpose of the Calculator Tool

This calculator is intended for the following types of developments:

- Multi-family residential (e.g. buildings containing 3 or more dwelling units)
- Commercial (e.g. office, hotel, retail, industrial, etc.)
- Mixed Use (e.g. a mix of residential and commercial uses within the same development)

Austin Water has developed this tool to help estimate a development project's specific water demands and supplies including

- Total potential potable water demands (e.g. faucets, baths/showers, dishwashers)
- Total potential non-potable water demands (e.g. toilets/urinals, clothes washers, industrial process water)
- Total potential onsite non-potable water supplies (e.g. rainwater, stormwater, graywater, blackwater, condensate water and industrial process water)

The water balance calculator is intended to help generate initial estimates. Users should verify the assumptions provided when generating specific project demands and update assumptions as appropriate
The calculator will be updated periodically as more user feedback is collected. Users may make adjustments to the calculator as appropriate to more accurately reflect onsite demands and supplies for building types that are not shown in the calculator or for building types that are shown but do not represent expected building demands and supplies. Users are encouraged to document and share these changes with Austin Water both to ensure transparency in calculations as well as to help inform future calculator updates.

## How to Use the Calculator Tool

This calculator is set up to automatically calculate the building's water demands and supplies based on size of building space, occupancy rate, standard fixture flow rates, etc. However, each demand and supply calculation section also provides cell inputs for the user to provide an "override" or "manual entry" of supply and demand estimates. Using the overrides and manual entries is optional; they are included to provide more flexibility to the user.

1. Use the tabs at the bottom of the workbook to navigate from sheet to sheet.
2. The user is encouraged to review all of the calculations in the sheets and to update any cale
3. Results of the calculator are summarized in the Water Balance and Project Summary sheets.
4. Each sheet of the calculator contains equations, assumptions, sources and backup data for the user to reference.

## Layout of the Calculator

| Calculator Sheets | Description | User Actions |
| :---: | :---: | :---: |
| Project Information | Enter project site plan information | Enter site plan information, building space areas, days of operation and occupancy rates |
| Indoor Demand | Calculate indoor water demands from fixtures | Enter fixture information, usage rates, etc. if not using defaults |
| Outdoor Demand | Calculate outdoor water demands for landscaping and amenities | Enter information about outdoor irrigation and water features if not using defaults |
| Indoor Supply | Calculate graywater, blackwater and condensate supplies | Enter information about HVAC size, graywater and blackwater generation, etc. if not using defaults |
| Outdoor Supply | Calculate rainwater and stormwater supplies | Enter information about collection volumes and runoff efficieincy for rainwater and stormwater if not using defaults |
| Water Balance | Summary of the project water balance | No action needed - results are calculated from inputs on other sheets |
| Project Definition | User specifies non-potable demands and supplies for | Select non-potable demands and onsite supplies that will be used in the design of an onsite water reuse system |


|  | COLOR CODING KEY: |
| :---: | :---: |
| User Input Value | Yellow cells are required input fields for the user |
| Derived from User Input | Green cells are linked from a user's previous input into another cell |
| Autogenerated Value | Blue cells are values based on calculations from other cells |
| Default Value | Gray cells are default values |
| Manual Override Value | Pink cells allow the user to $m$ |

$\lll$ The cell colors to the left guide the user through the workbook steps. This color coding key is provided at the The cell colors to the left guide the user

| Defanul Value | Gray cells ale defaut values |
| :--- | :--- |
| Manual Override Value | Pink cells allow the user to manually override default values |

## Calculator Use Assumptions

1. It is assumed that the main users of this calculator will be designated project team members (e.g. project engineer or manager) and Austin Water review staff; all users and reviewers need access to Microsoft Excel 2007 or later and basic proficiency in Excel.
2. The level of detail required for building information inputs into the calculator assumes that the project is at a schematic or design development phase.
3. The estimated level of effort for a user to enter information in this calculator is approximately $0.5-1$ hour, depending on the complexity of the project. Note that this estimate does not include the time taken to consolidate relevant building information, or conduct external analysis of other specified demands or supplies not included in the default calculations provided in the calculator.

Water Balance Calculator
Instructions/Notes

$\square$-SSite Plan case number to be added by $A$ AW reviewer

| coonoker. | User Input Value Derived from User Input Autogenerated Value Default Value |
| :---: | :---: |
|  |  |
|  |  |

## Project Information

Enter general project information related to the site and buildings in this section

|  |  |
| :---: | :---: |
| Proijecter Sameeificis |  |
|  |  |
| ated project completion datele (ready for or ocupunency) 10/6/2021 |  |
|  |  |
| Promet Contat Named ${ }^{\text {MCB }}$ |  |
| Contat Phone NumberContact mmil Address |  |
| Project Type M Mixed Use |  |
|  |  |
| Building Specifics |  |
| Number of Buildings in ProjectMaximum Number of Building Stories |  |
|  |  |
| Austin Energy Green Building Project |  |


| SITE COVERAGE |  | Water use infornation |
| :---: | :---: | :---: |
| Site Area |  | Water features |
| Site Area (square feet) | 1,66,985 | Does the Project Have P Pool or Spaz] No |
| Site Gross flor Area (square feet) | 1,63,985 | Does the Project Have a Water feature? ${ }^{\text {a }}$ |
| Gross Floor Area is the total enclosed area of all floors in a building measured to the outside Does the Project Have a Cooling Tower? Yes surface of the exterior walls (excludes loading docks, porches, stoops, basements, attics, stories below grade plane, parking facilities, driveways). |  |  |
|  |  |  |
| Impervious Surfaces |  | Access to Reclaimed Water  <br> Distance to a Reclaimed Water Main $>500$ feet |
| Building Roof frea (square feet) | 585,011 |  |
| er Imperious Area (square feet) | ${ }^{315,331} 5$ |  |
| Inscape Are |  | Irigation System |
| Turffeass ssuare feet) | 209500 | Turfrass ririgation Typel Drip |
| Native/Adapted Beds (suuare feet) |  | Native/Adapted Beds Irigation Tyee Spray |
|  | 57.060 | - |
| Total l lirigated landscaped Area (square feet) | 266,560 |  |


Appendix Nof the Environmental Criteria Monual.
Building Information Enter site-specfici information for al residentiol and commercial reas of the project in this section.









| Water Balance Calculator |  |
| :---: | :---: |
| Instructions/Notes |  |
| This sheet calculates the average monthly and annual outdoor potable and non-potable water demands for the project. <br> The calculations incorporate landscape and water use inputs from the Project Information sheet, as well as default values for water using features in the project. <br> No user input is needed; however, the user should override default values using the pink cells to more accurately estimate project demands. <br> All demand calculations are shown beneath the relevant tables and summary calculations are found at the end of each section. |  |

Outdoor Irrigation Demand
This section calculates typical irrigation demands using Austin Water's irigation budget equation which is modeled after customer meter data. The equation assumes the total landscaped area, independent of plant categories, has a warm season tuffrass coefficient that varies b $b$
month, and that the quality factor for the landscape is high quality. The equation does not take into account inputs such as rainfall and irrigation efficiency. The outputs provide a representation of typical customer water use per square foot of active irrigation system, and not a commendation for irrigation demands. The user may override monthly irrigation demand values with other calculated values

Definitions
-Landscaped Area (LA) is the area of plants and vegetation with a dedicated irrigation system installed for watering.
-Average Reference Evapotranspiration (ETO) is an estimate of the water requirement of a reference plant type where it is rown under reference conditions.
-Research-based Turfgrass Crop Coefficients (KC) have been established to adjust ETo data for different plant types. Kc is a dimensionless number
Quality Factors (QF) indicate the level of performance and appearance of the plant and can be used to adiust the Crop coefficient (Kc). QF is is dimensionless

| Total l rigated Landscaped Area | 266,560 |
| ---: | ---: |



Notes:
(1) Monthly mean precipitation data a are from the Texas Water Devel

Outdoor Pools/Spas and Decorative Water Feature Demands
Poois/SPAS

| Total surface area of the pools/spas in square feet: $\quad$ No Pool/Spa |  |  |  | Total volume of the pools/spas in gallons: No Pool/spa |  |  |  | <<<Defauts assume a $20^{\prime} \times 52^{\prime} \times 44^{\prime}$ pool, enter actual area and volume of the pool in the pink cells |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Month | January | February | March | April | May | Jun | July | August | September | October | November | December | Annual |
| Gross Pan Evaporation (inches) ${ }^{(101 / 2]}$ | 2.16 | 2.45 | 3.68 | 4.39 | 4.62 | 6.11 | 7.14 | 6.96 | 5.35 | 4.31 | 2.98 | 2.19 | 52.3 |
| Precipitation (inches $)^{101 / 2]}$ | 2.16 | 2.32 | 2.34 | 2.91 | 4.1 | 3.22 | 1.96 | 2.28 | 3.32 | 3.57 | 2.65 | 2.38 | 33.21 |
| Net Evaporation (inches) | 0.00 | 0.13 | 1.34 | 1.48 | 0.52 | 2.89 | 5.18 | 4.68 | 2.03 | 0.74 | 0.33 | 0.00 | 19.13 |
| Volume of Water Use (gallons) |  | - |  | - | - | - | - |  |  |  |  |  |  |
| Manual Override Values>>> |  |  |  |  |  |  |  |  |  |  |  |  |  |

Notes:
Monthly mean evaporation and precipta
DECORATVE WATER FEATURES


Noter
(1) Monthly mean evaporation and precipitation data are from the Texas Water Development Board's Water Dota for Texas webpage: $\mathrm{https}: / /$ waterdatafortexas. org//ake-evaporation-rainfal.
(2) Precipitation data are from $1940-2018$ while gross lake evaporation data are from $1954-2018$ fos Quad 710 .

| Month | January | February | March | April | May | June | July | August | September | October | November | December | Annu |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{\text { Volume of Backwash (gallons) }}{\text { Manual Verride Values>>> }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ter Backwash Volume = (15 gallons per minute / sq. ft. of filter area) ( 6 sq. ft. of filter area) $\times$ ( 5 minute flush per week) $\times$ ( 52 weeks per year//(12 months per year) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Note: The Model Aquatic Health Code (MAHC) recommends a backwash rate of at least $15 \mathrm{gpm} / \mathrm{sq}$. ft., which is standard for most pools. |  |  |  |  |  |  |  |  | Annual Usage ${ }_{\text {per year) }}$ (gallons |  | Annual Potable Usage | Non-Potable Usage (gallons per year) |  |
|  |  |  |  |  |  |  | Summary of Outdoor Pools/Spas and Decorative Water Features |  |  | - | - |  | - |
|  |  |  |  |  |  |  | = Pool/Spa Demand Demand + Filter B | $\begin{aligned} & \text { Feature } \\ & \text { pemand } \end{aligned}$ | $=$ Pool/Spa Demand + Filter Backwash Demand | = Water Feat |  |

Cooling Tower Demand


## Outdoor Dust Control/Street Cleaning Demands


Note: There are no default assumptions or calculations for outdoor dust control/street sweeping volumes. These volumes will need to be estimated by the project appicant if applicable.
Instructions/Notes
This sheet calculates the average daily and annual indoor supplies of water that can be captured onsite for the project.
The callulations incorporate occupancy inputs from the Project Information sheet, as well as default values for water using fixtures/features in the project. No user input is needed; however, the user should override default values using the pink cells to more accurately estimate project water supplies.

Indoor Graywater and Blackwater Supplies

| Grapwater Supplies |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Fixture Type | Total Indoor Supply (gpy) | $\begin{array}{\|c} \text { Total Annual } \\ \text { Graywater Supply } \\ \text { (gpy) } \end{array}$ | \% Grawwater Supply Available |  | Graywater Available for Reuse (gpy) |
| Showerhead | 13,586,980 | 13,58,980 | 90\% |  | 12,228,282 |
| Bathroom Faucet | 5,553,950 | 5,553,950 | 90\% |  | 4,998,555 |
| Kitchen Faucet | 16,661,849 | N/A | N/A | N/A | N/A |
| Clothes Washer | 0 | , | 90\% |  | 0 |
| Toilet | 5,049,045 | N/A | N/A | N/A | N/A |
| Dishwasher | 353,433 | N/A | N/A | N/A | N/A |
| Bath | 1,427,870 | 1,427,870 | 90\% |  | 1,285,083 |
| Graywater Available for Reuse = (Total Annual Graywater Supply, gallons) $\times$ (\% Supply Available) |  |  |  |  |  |


| Grawwater \& Blackwater Supplies |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Fixure Type | Total Indoor Supply (gpy) |  | \% Graywater \& Blackwater SupplyAvailable |  | $\begin{array}{\|c} \text { Graywater \& } \\ \text { Blackwater Available } \\ \text { for Reuse (gpy) } \end{array}$ |
| Showerhead | 761,938 | 761,938 | 90\% |  | 685,744 |
| Bathroom Faycet | 940,964 | 940,964 | 90\% |  | 846,868 |
| Toilet (Male) | 734,499 | 734,499 | 90\% |  | 661,049 |
| Toilet (Female) | 1,940,194 | 1,940,194 | 90\% |  | 1,746,174 |
| Urinal | 591,732 | 591,732 | 90\% |  | 532,559 |
| Kitchen Faucet | 196,046 | 196,046 | 90\% |  | 176,441 |
| Patient/Guest Laundry | 0 | 0 | 90\% |  | 0 |
| Commercial Dishwasher | 161,768 | 161,768 | 90\% |  | 144,591 |
| Pre-rinse Spray Valve | 197,579 | 197,579 | 90\% |  | 177,821 |
| Ice Machine | N/A | N/A | N/A | N/A | N/A |
| Food Steamer | N/A | N/A | N/A | N/A | N/A |
| Combination Oven | N/A | N/A | N/A | N/A | N/A |
| Commercial Laundry | 0 | 0 | 90\% |  | 0 |
| Car Wash | 0 | 0 | 90\% |  | 0 |
| Industrial Process Water | 0 | 0 | 90\% |  | 0 |
| Medical Equipment Process Water | 0 | 0 | 90\% |  | 0 |
| Other Non-potable Fixture Use | 0 | 0 | 90\% |  | 0 |
| Other Potable Fixture Use | 0 | 0 | 90\% |  | 0 |
| Graywater + Blackwater A | Reuse $=$ (To | Annual Graywater \& | Blackwater S | ns) $\times$ (\% Su | V Available) |



Note: Average graywater and blackwater treatment losses are assumed to be $10 \%$, but the user may enter data specific to a particular treatment technology if available.
Foundation Drainage Supply

Note: There are no default assumptions or calculations for foundation drainage volumes. These volumes require a hydrologic assessment of the project site.
Cooling Tower Blowdown Supply


This sheet calculates the average monthly and annual outdoor supplies of water that can be captured onsite for the project.
The calculations incorporate site information and water use inputs from the Project Information sheet, as well as default values for collection volume and runoff coefficients.
calculations incorporate site information and water use inputs from the Project Information sheet, as well as default values for colle invorume and
If the project will combine collection of rainwater, stormwater or HVAC condensate into a common cistern, then the user should define the source waters, drainage areas and
cistern size in the yellow cells in the Combined Source Cistern Supply section at the end of the sheet.
All supply calculations are shown beneath the relevant tables.

|  | Usernout Vave |
| :---: | :---: |
|  | Derived from |
|  | enerated Value |
|  | Defaut Value |
|  | Manual Override Value |

Rainwater and Stormwater Supplies (Runoff from Impervious Surfaces)


| Total Area (square feet) | Area Draining to Collection Tank (square feet) | \% of Roof Area Draining to Collection | Default Runoff Coefficient (\%) | User-Defined <br> Runoff Coefficient <br> (\%) | Recommended Active Collection Volume (gallons) | User-Defined Active Collectio Volume (gallons) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |



| Impervious Surface | Total Area (square feet) | Area Draining to Collection Tank (square feet) | \% of Roof Area Draining to Collection Collection | Default Runoff Coefficient (\%) | User-Defined Runoff Coefficient (\%) | Active Collection Volume (gallons) | User-Defined Active Collection Volume (gallons) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Non-Roof Impervious Surfaces | 315,331 |  | 100\% | 85\% |  | 166,983 |  | Sormwater or HVAC condensate into a common cistern, then the user should define the source Recommended Active Collection Volume $=$ (Non-Roof Area Draining to Collection, sq. ft. $) \times(1$ inch of rainfall $) \times(0.623$ gallons/inch of rainfall $/$ sq. ft.) $\times$ (Runoff Coefficient, $\%$ )



Note: The monthly supply of rainwater/stormwater is a function of a 10 -year simulation of daily rainfall values based on historic data, the drainage areas and runoff coefficients, the active collection volume available for storage, and the daily demand for the supply
HVAC Condensate Supply


Note: Monthly $\mathrm{A} / \mathrm{C}$ Condensate production rates are based on the estimation method outined in the SAWS $\mathrm{A} / \mathrm{C}$ Condensate Collection and Use Manual for Commercial Buildings while using Austin, TX meteorological data.
Combined Source Cistern Supply (Any Combination of Rainwater, Stormwater and HVAC Condensate in a Single Cistern)


Note: The monthly supply of combined rainwater/stormwater/condensate is a function of a 10 -year simulation of daily rainfall values based on historic data, the drainage areas and runoff coefficients, the active collection volume available for storage, and the daily demand for the supply



```
Water Balance Calculator
Water Balance Calculator
Austin \(=10\)
```


## Project Summary Sheet

| $\qquad$ Project Contact: |  |
| :--- | :--- |
|  |  |
|  | MCB |

## Demands and Supplies Summary



| Development Project / Building Name: | BOR |
| :---: | :---: |
| Project Address: | All Buildings |
| Site Plan Number: | 0 |
| Number of Buildings in Development: | 9 |
| Number of Stories in Development: | 0 |


| Development Type: | Mixed Use |
| :---: | :---: |
| Total Building(s) Size (GSF): | 1,636,985 |
| Total Lot Size ( $\mathrm{ft}^{2}$ ): | 1,636,985 |
| Number of Residential Units: | 1,537 |
| Building Roof Area ( $\mathrm{ft}^{2}$ ): | 585,011 |
| Other Impervious Area ( $\mathrm{ft}^{2}$ ): | 315,331 |
| Irrigated Landscaped Area ( $\mathrm{ft}^{2}$ ): | 266,560 |

Non-Potable Supply Estimates

| Non-Potable Demand Estimates |  |
| ---: | :---: |
| Project Non-Potable Demands | Annual Demand (gpy) |
| Toilets/Urinals: | $8,315,470$ |
| Clothes Washing/Laundry: | 0 |
| Water Features: | 0 |
| Irrigation: | $3,859,900$ |
| Cooling Tower: | $27,193,100$ |
| Other Demands: | 0 |
|  | TOTAL |
|  | $\mathbf{3 9 , 3 6 8 , 4 7 0}$ |

